Critical Speed Formula:
From: | To: |
Definition: This calculator determines the critical speed of a rotating shaft, which is the speed at which the shaft becomes dynamically unstable.
Purpose: It helps mechanical engineers and designers ensure shafts operate below their critical speed to prevent resonance and failure.
The calculator uses the formula:
Where:
Explanation: The formula calculates the natural frequency of the shaft and converts it to RPM.
Details: Operating near critical speed can cause excessive vibrations, leading to bearing failures, seal damage, and catastrophic shaft failure.
Tips: Enter the shaft deflection in meters and gravity (default 9.81 m/s²). All values must be > 0.
Q1: What causes shaft deflection?
A: Deflection results from the shaft's weight, attached components, and any radial loads acting on it.
Q2: How do I measure shaft deflection?
A: It can be calculated using beam deflection formulas or measured experimentally with dial indicators.
Q3: What safety margin should I use?
A: Typically, operate at least 20% below the critical speed or 20% above (if passing through quickly during startup/shutdown).
Q4: Does this account for multiple critical speeds?
A: No, this calculates only the first critical speed. Longer shafts may have higher-order critical speeds.
Q5: How does bearing type affect critical speed?
A: Bearing stiffness influences critical speed. More rigid bearings generally increase critical speed.